
Cryptography

3 – Authentication and hash functions

G. Chênevert

September 30, 2019

mailto:gabriel.chenevert@yncrea.fr

Today

User authentication

Hash function design

Message authentication

User authentication

Applications often need to ask users (or devices...) to identify themselves in order to

know how to behave.

id : Alice id : Bob id : Alice

gnark gnark

Authentication factors

Obviously such an input needs to be authenticated (confirmed).

Authentication methods usually rely on factors such as:

• something the user knows,

• something the user has,

• something the user is (or a way he behaves).

Password authentication

Upon registration, every user provides (or is assigned) a password.

id : Alice

pw : Ii(H48s

id : Bob

pw : secret

· · ·

Naive implementation

All valid pairs (id, pw) are stored by the service provider Sammy.

When a pair (id, pw′) is received, Sammy checks whether

pw′ = pw.

Problem

An attacker with read access recovers all the passwords.

(Equivalently: need absolute trust in Sammy!)

Storing encrypted versions E (k , pw) seems better. . .

. . . is it ? (hint: not really)

NB: sending encyrpted passwords on the communication channel is certainly a good

idea, though

Solution

Use one-way (lossy) encryption

i.e. a hash function

H : {0, 1}∗ −→ {0, 1}n.

Examples:

MD5 (deprecated), SHA-1 (deprecated),

SHA-2, SHA-3, BLAKE2, Whirlpool, . . .

Usage

A hash function turns everything into a fixed-length hex word.

Better password management

Sammy stores, for every valid user, a hash of their password:

(id, h) with h = H(pw).

Authentication:

Upon reception of (id, pw′), Sammy checks if

H(pw′) = h.

Requirement

The hash function should be preimage resistant:

given h, it must be computationally hard to find m such that

H(m) = h.

Attacks:

• brute force

• dictionary (precomputed)

• rainbow tables (space-time tradeoff)

http://en.wikipedia.org/wiki/Rainbow_table

Improvements

• Salting: store (id, s,H(s || pw)) where s is random salt

• Key stretching: more generally, use a key derivation function to generate

k = K (s, pw) and store (id, s, k)

where K is made deliberately slow

Examples: PBKDF2, Bcrypt, scrypt

=⇒ this is what should always be used in practice

http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Bcrypt
http://www.tarsnap.com/scrypt.html

Today

User authentication

Hash function design

Message authentication

Cryptographic hash functions

Hash functions are useful for many things:

• id generation

• hash tables

• pattern detection

• serialization

• . . .

but certain specific properties are required for their use in cryptography.

Requirements

• determinism: m = m′ =⇒ H(m) = H(m′)

• uniformity: every hash occurs with probability 1/2n

• avalanche: m ≈ m′,m 6= m′ =⇒ H(m) 6≈ H(m′)

(exactly the inverse of continuity)

Things that should be hard

• given h, find m such that H(m) = h

(preimage resistance)

• given m, find m′ 6= m such that H(m′) = H(m)

(second preimage resistance)

• find m 6= m′ such that H(m) = H(m′)

(collision resistance)

A textbook case: the story of SHA-1

• 1995: Secure Hash Algorithm 1 standardized by NIST

• 2005: first ”theoretical” collision attacks published

• 2010: collision complexity brought down to roughly 260

Estimated cost of attack: 3 M$

• 2015: ”the SHAppening” first practical attack demonstration

Estimated cost of attack: 100 k$

• 2017: ”SHAttered” first public collision

• 2019: Improved chosen prefix attack

https://shattered.io/

The birthday problem

• generating N > 2n hashes =⇒ certain collision

• if N values are generated uniformly at random, the probability of a collision is

p = 1−
N−1∏
k=0

(
1− k

2n

)
≈ 1− e−

1
2n (N2) ≈ 1− e−

1
2n+1N

2

Example: The probability that 40 randomly chosen persons share a birthday is

≈ 1− e−
1

365 (402) ≈ 88.2%

NB: non-uniformity in the distibution of values only make collisions more probable

Collision probability as function of hash length

https://sagecell.sagemath.org/?z=eJwVysEKgkAQANBzgv8wiIcZGstdzEOw0JcoW461sK3iLrT19eHpXd7NhSSbfaSyKItJZhhHDCZ6N8mGHetLz4p1y97exZuqDnVFdN3zYfVLQlDQgOQVm27IZz1gOCoiBszcciCgU3wtH5zdM7qfmJ7h-3bBtLs2G0V_-u8jnQ==&lang=sage&interacts=eJyLjgUAARUAuQ==

Birthday attack

One can show that the average number of values to be generated before a collision is

found is approximately √
π2n−1 ≈ 1.25× 2

n
2 .

Hence: a n-bit hash function provides ≤ n
2 bits of security.

=⇒ hashes need to be at least 256 bits long to provide 128 bits of security.

Pearson hash

An insecure construction

Divide the message m into k-bit blocks (m1,m2, . . .)

and choose a permutation σ of {0, 1}k = [[0, 2k [[.

h = 0

for mi in m:

h = σ(h ⊕mi)

Nice, but specifying σ takes k · 2k memory . . .

Merkle-Damg̊ard construction

Reuses the idea of Pearson hashing.

Pseudocode

h = h0

for mi in m:

h = F (h,mi)

where the compression function F is typically a simple operation iterated r times on

the internal state (size s, divided into w -bit words)

Famous cryptographic hash functions

name published deprecated n k s w r

MD5 1991 2000 128 512 512 32 64

SHA-1 1995 2005 160 512 160 32 64

SHA-2 2001 – 256 (224) 512 256 32 64

512 (448) 1024 512 64 80

SHA-3 2012 – . . .

SHA-3 (Keccak)

Sponge construction

(R,C) = (R0,C0)

// absorption

for mi in m:

(R,C) = F (R ⊕mi ,C)

// then some more drying

eventually output R

Allows for certain freedom in choice of parameters

e.g. SHA3-224, SHA3-256, SHA3-384, SHA3-512, . . .

Today

User authentication

Hash function design

Message authentication

Hash as checksum

Hash functions can be used to verity message integrity.

Alice: appends to a message m its hash h = H(m).

Bob: verifies upon reception of (m, h) that h = H(m).

(If not: transmission problem detected)

Example

m = You owe me 10 $

h = c7b12b33fdd17399

mreceived = You owe me 10 $

hreceived = c7b12b33fdd17399

hcomputed = c7b12b33fdd17399

Ok !

Example (cont’d)

m = You owe me 10 $

h = c7b12b33fdd17399

mreceived = You owe me 100 $

hreceived = c7b12b33fdd17399

hcomputed = 08821af9be531f29

Error !

But also...

m = You owe me 100 $

h = 08821af9be531f29

mreceived = You owe me 100 $

hreceived = 08821af9be531f29

hcomputed = 08821af9be531f29

Ok ! . . .

Problem

Even if H cannot be manipulated . . .

anybody can compute a valid hash!

Double-edged sword:

• falsification

• repudiation

=⇒ no authentication at all

Idea: encrypt the hash

Alice: appends to m its encrypted hash h = E (k ,H(m))

Bob: upon reception of (m, h), checks whether H(m) = D(k , h)

Problem: since H(m) and h are public, the secret key k is exposed. . .

Message authentication codes

Definition

A MAC consists of a tag function K×M→ T as well as a verification algorithm that

decides whether a particular MAC is valid for a given message.

• Correctness: every generated MAC should be valid

• Forgery resistance no one should be able to create a valid pair (m, t) without

knowing the key.

From a hash function

Standard construction:

HMAC(k ,m) := H((k ⊕ opad) ||H((k ⊕ ipad) ||m))

Alice: appends to m its tag t = HMAC(k ,m)

Bob: verifies unpon reception of (m, t) whether t = HMAC(k,m)

From a block cipher

Idea: Encrypt m = m1|| · · · ||m` in CBC-mode with IV = 0.

CBC-MAC(k,m) := c`

+ additional precautions to prevent extension attack

Never reuse the same key for different purposes!

Authenticated encryption

Given a secure cipher + a secure MAC:

• encrypt then MAC: always ok

• encrypt and MAC: weakens encryption

• MAC then encrypt: ok in some cases

End remarks

• AE provides confidentiality, authentication, integrity, non-repudiation

• modern approach is to provide AE as a single primitive

• examples: OCB, EAX, EtM, GCM, CCM modes

• AE does not prevent replay attacks by itself

=⇒ Authenticated Encryption with Associated Data (AEAD) as IV should be used.

	User authentication
	Hash function design
	Message authentication

